杏彩体育
杏彩体育 分类
IM电竞数控加工工艺论文范文 发布日期:2023-06-08 11:07:28 浏览次数:

  NXCAM是UG软件的计算机辅助制造模块,其功能强大,可以实现对复杂零件和特殊零件的加工,此编程工具易于使用。NXCAM已成为现代相关企业和工程师的首选[1]。进入NX8.0CAM模块,初始化加工环境,先建立型腔三维模型与毛坯,根据前述的工艺分析进行刀具组的创建,按NX/CAM的通用过程创建几何体,定义加工坐标系(根据装夹进行安全平面的设置);为后续的刀轨能实现3D动态模拟,在这里同时也进行了部件与毛坏的定义。由不同的加工要求,分别设置相应的加工方法。

  1.1创建上表面3D平面铣工序平面铣(planarmilling)主要用于平面轮廓、平面区域或平面孤岛的一种铣削方式。它通过逐层切削工件来创建刀具路径,可用于零件的粗、精加工[2]。

  1.1.1创建上表面粗加工平面铣工序通过单击工具条上的图标,在出现的“创建工序”对话框中选【类型】为【mill_planar】,【子类型】为【FACE-MILLING】,并按加工方案选用刀具与加工方法,点击“确定”,在出现的【面铣】对话框中以“曲线/边”模式选择毛坯上表面的4条边完成边界几何体的设置,在【机床控制】下分别进行“开始刀轨事件”和“结束刀轨事件”的相应设置。同时设【切削方式】为(往复走刀),行距为刀具直径的75%,按工艺安排表中的参数分别进行“进给率和速度”等参数设置,然后点击“生成刀具轨迹”图标,生成刀轨,完成上表面的粗加工工序的创建。

  1.1.2创建上表面精加工工序与上述创建上表面的粗加工工序方法类似进行设置,但要选用不同的刀具和加工方法,同时要在“进给率与速度”中将“主轴转速”更改为2,000。由于是精加工,在刀轨设置时将行距优化为刀具直径的50%,得到的精加工型腔上表面刀轨如图2所示。

  1.2创建4个侧面3D平面铣工序4个侧面的加工没有分粗、精加工,而是一步到位。选【类型】为【mill_planar】,【子类型】为【PLANAR-MILL】,其余如同上表面加工工序方法类似设置,以【曲线/边】模式定义部件与毛坯边界,以“指定底面”进行加工底面设置。在“切削层”对话框中设置“每刀深度”为4,与前述方法类似,分别完成“进给率和速度”与“机床控制”栏下的相应设置与刀轨设置,然后点击“生成刀具轨迹”图标,生成刀轨如图3所示。

  1.3型腔的内腔加工型腔的内腔是成型塑件产品的工作面,表面质量要求较高,在这里采用型腔铣开粗、固定轴轮廓铣半精加工、区域铣精加工3步完成其加工。

  1.3.1创建内腔的型腔铣粗加工工序型腔铣主要用于加工型腔或型芯,属多层切削,可以加工侧壁与底面不垂直的工件[3]。通过【插入】/【工序】,在“创建工序”对话框中选类型为“mill_contour”,“子类型”为“”,由加工工艺方案选用相应的刀具、加工方法、“进给率和速度”等参数设置。驱动方法对刀轨的影响较大,在UG软件中对数控加工提供了多种类型的驱动方法,驱动方法的选择与被加工零件表面的形状及其复杂程度有关,本型腔铣粗加工以“边界”驱动方式[4]。选择好切削区域,生成刀轨,如图4所示。

  1.3.2创建内腔的固定轴轮廓铣半精加工工序固定轴轮廓铣是三坐标联动加工,主要用来加工自由曲面等特征,如模具等,刀具沿复杂曲面轮廓运动,适用于半精加工与精加工。在“mill_contour”类型下选子类型“FIXED-CONTOUR”,进入“固定轴轮廓铣”,选“边界”驱动。边界驱动方式可指定以边界或环路来定义切削区域,其刀具路径沿着复杂的曲面轮廓而产生。点图标工具,选内腔边缘为“驱动几何体”。与前述方法类似,分别完成“进给率和速度”(“主轴转速”输15,000转/min)“、机床控制”栏及刀轨的相应设置,然后点击“生成刀具轨迹”图标,生成刀轨如图5所示。根据加工的弧面形状,选用球刀进行半精加工,主轴转速达6,000转/min,从模拟仿真的结果来看,得到的刀轨较优。

  1.3.3创建内腔轮廓曲面区域铣精加工工序轮廓铣是三坐标联动加工,常用于精加工,主要用来加工模具的自由曲面等特征[5]。模具型腔的内腔表面的精加工采用曲面区域铣,类型为MILL-CONTOUR,子类型为“CONTOUR_AREA”,刀具为B5球头铣刀。在“驱动设置”中将“切削模式”设置为“跟随周边”。由于是精加工,将“步距”设为刀具平直百分比的30%,部件的内公差及外公差均设为O。选内腔所有曲面为切削区域,并与前述方法类似,分别完成“进给率和速度”(“主轴转速”输20,000转/min)“、机床控制”栏及刀轨的相应设置,然后点击“生成刀具轨迹”图标,生成刀轨如图6所示。

  1.3.4创建型腔的孔系加工工序为保证孔系定位精度,先对所有孔统一安排了一道中心钻工序。在“创建刀具”对话框通过改变“类型”为“DRILL”,“子类型”选择“SPOTDRILLINGTOOL”,创建中心钻刀。进入“定心钻”对话框后进行循环类型的设置、各孔的选择及各循环参数的设置,然后生成所有孔的中心钻刀轨,如图7所示。同理,完成其余所有孔的钻削加工刀轨生成与动态仿真验证。进行所有工序的刀轨生成,如图8所示,动态仿线后处理作为NXCAM模块中的一个重要组成部分,后置处理的主要任务是将NXCAM软件生成的加工刀位轨迹源文件转成数控机床可接受的代码(NC)文件[6]。型腔产品的加工刀轨生成后通过3D模拟,验证其不存在打刀、过切等情况,并且刀轨路径是较优化的,则可以点,进行后置处理,生成数控加工程序单,得到可用于实际生产的程序。

  UGNX软件CAD/CAM功能具有较完美的结合,在零件编程设计的过程中可以人机对话,随时修改模型,并对结果进行实际工况的加工刀轨仿真,由过程仿真,可以对打刀、过切、加工不到位等不良现象进行监控,保证了加工质量[7]。利用UG软件建立零件的几何模型,可以交互式地模拟演示材料按数控刀轨数据被去除的过程,可迅速自动生成数控代码,缩短编程人员的编程时间,提高程序的正确性和安全性,降低生产成本,提高工作效率[8]。本文所介绍的应用案例对其他曲面加工也有很好的借鉴作用。

  数控车削加工主要包括工艺分析、程序编制、装刀、装工件、对刀、粗加工、半精加工、精加工。而数控车削的工艺分析是数控车削加工顺利完成的保障。

  数控车削加工工艺是采用数控车床加工零件时所运用的方法和技术手段的总和。其主要内容包括以下几个方面:

  (一)选择并确定零件的数控车削加工内容;(二)对零件图纸进行数控车削加工工艺分析;(三)工具、夹具的选择和调整设计;(四)切削用量选择;(五)工序、工步的设计;(六)加工轨迹的计算和优化;(七)编制数控加工工艺技术文件。

  笔者观察了很多数控车的技术工人,阅读了不少关于数控车削加工工艺的文章,发现大部分的使用者采用选择并确定零件的数控车削加工内容、零件图分析、夹具和刀具的选择、切削用量选择、划分工序及拟定加工顺序、加工轨迹的计算和优化、编制数控加工工艺技术文件的顺序来进行工艺分析。

  但是笔者分析了上述的顺序之后,发现有点不妥。因为整个零件的工序、工步的设计是工艺分析这一环节中最重要的一部分内容。工序、工步的设计直接关系到能否加工出符合零件形位公差要求的零件。工序、工步的设计不合理将直接导致零件的形位公差达不到要求。换言之就是工序、工步的设计不合理直接导致产生次品。

  目前,数控车床的使用者的操作水平非常高,并且能够独立解决很多操作上的难题,但是他们的理论水平不是很高,这是造成工艺分析顺序不合理的主要原因。

  其实分析了工艺分析顺序不合理的现象和原因之后,解决问题就非常容易了。需要做的工作只要将对零件的分析顺序稍做调整就可以。

  (一)选择并确定零件的数控车削加工内容;(二)对零件图纸进行数控车削加工工艺分析;(三)工序、工步的设计;(四)工具、夹具的选择和调整设计;(五)切削用量选择;

  零件图分析是制定数控车削工艺的首要任务。主要进行尺寸标注方法分析、轮廓几何要素分析以及精度和技术要求分析。此外还应分析零件结构和加工要求的合理性,选择工艺基准。

  零件图上的尺寸标注方法应适应数控车床的加工特点,以同一基准标注尺寸或直接给出坐标尺寸。这种标注方法既便于编程,又有利于设计基准、工艺基准、测量基准和编程原点的统一。

  在手工编程时,要计算每个节点坐标。在自动编程时要对零件轮廓的所有几何元素进行定义。

  对被加工零件的精度和技术进行分析,是零件工艺性分析的重要内容,只有在分析零件尺寸精度和表面粗糙度的基础上,才能正确合理地选择加工方法、装夹方式、刀具及切削用量等。

  (1)保持精度原则。工序一般要求尽可能地集中,粗、精加工通常会在一次装夹中全部完成。为减少热变形和切削力变形对工件的形状、位置精度、尺寸精度和表面粗糙度的影响,则应将粗、精加工分开进行。

  (2)提高生产效率原则。为减少换刀次数,节省换刀时间,提高生产效率,应将需要用同一把刀加工的加工部位都完成后,再换另一把刀来加工其他部位,同时应尽量减少空行程。

  (2)先近后远。离对刀点近的部位先加工,离对刀点远的部位后加工,以便缩短刀具移动距离,减少空行程时间。此外,先近后远车削还有利于保持坯件或半成品的刚性,改善其切削条件。

  (3)内外交叉。对既有内表面又有外表面需加工的零件,应先进行内外表面的粗加工,后进行内外表面的精加工。

  (4)基面先行。用作精基准的表面应优先加工出来,定位基准的表面越精确,装夹误差越小。

  数控车削加工中尽可能做到一次装夹后能加工出全部或大部分代加工表面,尽量减少装夹次数,以提高加工效率、保证加工精度。对于轴类零件,通常以零件自身的外圆柱面作定位基准;对于套类零件,则以内孔为定位基准。数控车床夹具除了使用通用的三爪自动定心卡盘、四爪卡盘、液压、电动及气动夹具外,还有多种通用性较好的专用夹具。实际操作时应合理选择。

  刀具的使用寿命除与刀具材料相关外,还与刀具的直径有很大的关系。刀具直径越大,能承受的切削用量也越大。所以在零件形状允许的情况下,采用尽可能大的刀具直径是延长刀具寿命,提高生产率的有效措施。数控车削常用的刀具一般分为3类。即尖形车刀、圆弧形车刀和成型车刀。

  数控车削加工中的切削用量包括背吃刀量ap、主轴转速S(或切削速度υ)及进给速度F(或进给量f)。

  切削用量的选择原则,合理选用切削用量对提高数控车床的加工质量至关重要。确定数控车床的切削用量时一定要根据机床说明书中规定的要求,以及刀具的耐用度去选择,也可结合实际经验采用类比法来确定。一般的选择原则是:粗车时,首先考虑在机床刚度允许的情况下选择尽可能大的背吃刀量ap;其次选择较大的进给量f;最后再根据刀具允许的寿命确定一个合适的切削速度υ。增大背吃刀量可减少走刀次数,提高加工效率,增大进给量有利于断屑。精车时,应着重考虑如何保证加工质量,并在此基础上尽量提高加工效率,因此宜选用较小的背吃刀量和进给量,尽可能地提高加工速度。主轴转速S(r/min)可根据切削速度υ(mm/min)由公式S=υ1000/πD(D为工件或刀/具直径mm)计算得出,也可以查表或根据实践经验确定。

  数控机床作为一种高效率的设备,欲充分发挥其高性能、高精度和高自动化的特点,除了必须掌握机床的性能、特点及操作方法外,还应在编程前进行详细的工艺分析和确定合理的加工工艺,以得到最优的加工方案。

  [1]《数控车削加工工艺性分析》.周鹏.《消费导刊·理论版》2009年第1期

  数控车削加工工艺是采用数控车床加工零件时所运用的方法和技术手段的总和。其主要内容包括以下几个方面:

  (一)选择并确定零件的数控车削加工内容;(二)对零件图纸进行数控车削加工工艺分析;(三)工具、夹具的选择和调整设计;(四)工序、工步的设计;(五)加工轨迹的计算和优化;(六)数控车削加工程序的编写、校验与修改;(七)首件试加工与现场问题的处理;(八)编制数控加工工艺技术文件;总之,数控加工工艺内容较多,有些与普通机床加工相似。

  工艺分析是数控车削加工的前期工艺准备工作。工艺制定得合理与否,对程序的编制、机床的加工效率和零件的加工精度都有重要影响。为了编制出一个合理的、实用的加工程序,要求编程者不仅要了解数控车床的工作原理、性能特点及结构。掌握编程语言及编程格式,还应熟练掌握工件加工工艺,确定合理的切削用量、正确地选用刀具和工件装夹方法。因此,应遵循一般的工艺原则并结合数控车床的特点,认真而详细地进行数控车削加工工艺分析。其主要内容有:根据图纸分析零件的加工要求及其合理性;确定工件在数控车床上的装夹方式;各表面的加工顺序、刀具的进给路线以及刀具、夹具和切削用量的选择等。

  零件图分析是制定数控车削工艺的首要任务。主要进行尺寸标注方法分析、轮廓几何要素分析以及精度和技术要求分析。此外还应分析零件结构和加工要求的合理性,选择工艺基准。

  零件图上的尺寸标注方法应适应数控车床的加工特点,以同一基准标注尺寸或直接给出坐标尺寸。这种标注方法既便于编程,又有利于设计基准、工艺基准、测量基准和编程原点的统一。如果零件图上各方向的尺寸没有统一的设计基准,可考虑在不影响零件精度的前提下选择统一的工艺基准。计算转化各尺寸,以简化编程计算。

  在手工编程时,要计算每个节点坐标。在自动编程时要对零件轮廓的所有几何元素进行定义。因此在零件图分析时,要分析几何元素的给定条件是否充分。

  对被加工零件的精度和技术进行分析,是零件工艺性分析的重要内容,只有在分析零件尺寸精度和表面粗糙度的基础上,才能正确合理地选择加工方法、装夹方式、刀具及切削用量等。其主要内容包括:分析精度及各项技术要求是否齐全、是否合理;分析本工序的数控车削加工精度能否达到图纸要求,若达不到,允许采取其他加工方式弥补时,应给后续工序留有余量;对图纸上有位置精度要求的表面,应保证在一次装夹下完成;对表面粗糙度要求较高的表面,应采用恒线速度切削(注意:在车削端面时,应限制主轴最高转速)。

  数控车削加工中尽可能做到一次装夹后能加工出全部或大部分代加工表面,尽量减少装夹次数,以提高加工效率、保证加工精度。对于轴类零件,通常以零件自身的外圆柱面作定位基准;对于套类零件,则以内孔为定位基准。数控车床夹具除了使用通用的三爪自动定心卡盘、四爪卡盘、液压、电动及气动夹具外,还有多种通用性较好的专用夹具。实际操作时应合理选择。

  刀具的使用寿命除与刀具材料相关外,还与刀具的直径有很大的关系。刀具直径越大,能承受的切削用量也越大。所以在零件形状允许的情况下,采用尽可能大的刀具直径是延长刀具寿命,提高生产率的有效措施。数控车削常用的刀具一般分为3类。即尖形车刀、圆弧形车刀和成型车刀。

  (1)尖形车刀。以直线形切削刃为特征的车刀一般称为尖形车刀。其刀尖由直线性的主、副切削刃构成,如外圆偏刀、端面车刀等。这类车刀加工零件时,零件的轮廓形状主要由一个独立的刀尖或一条直线形主切削刃位移后得到。

  (2)圆弧形车刀。除可车削内外圆表面外,特别适宜于车削各种光滑连接的成型面。其特征为:构成主切削刃的刀刃形状为一圆度误差或线轮廓误差很小的圆弧,该圆弧刃的每一点都是圆弧形车刀的刀尖,因此刀位点不在圆弧上,而在该圆弧的圆心上。

  (3)成型车刀。即所加工零件的轮廓形状完全由车刀刀刃的形状和尺寸决定。数控车削加工中,常用的成型车刀有小半径圆弧车刀、车槽刀和螺纹车刀等。为了减少换刀时间和方便对刀,便于实现机械加工的标准化。数控车削加工中,应尽量采用机夹可转位式车刀。

  数控车削加工中的切削用量包括背吃刀量ap、主轴转速S(或切削速度υ)及进给速度F(或进给量f)。

  切削用量的选择原则,合理选用切削用量对提高数控车床的加工质量至关重要IM电竞。确定数控车床的切削用量时一定要根据机床说明书中规定的要求,以及刀具的耐用度去选择,也可结合实际经验采用类比法来确定。一般的选择原则是:粗车时,首先考虑在机床刚度允许的情况下选择尽可能大的背吃刀量ap;其次选择较大的进给量f;最后再根据刀具允许的寿命确定一个合适的切削速度υ。增大背吃刀量可减少走刀次数,提高加工效率,增大进给量有利于断屑。精车时,应着重考虑如何保证加工质量,并在此基础上尽量提高加工效率,因此宜选用较小的背吃刀量和进给量,尽可能地提高加工速度。主轴转速S(r/min)可根据切削速度υ(mm/min)由公式S=υ1000/πD(D为工件或刀/具直径mm)计算得出,也可以查表或根据实践经验确定。

  (1)保持精度原则。工序一般要求尽可能地集中,粗、精加工通常会在一次装夹中全部完成。为减少热变形和切削力变形对工件的形状、位置精度、尺寸精度和表面粗糙度的影响,则应将粗、精加工分开进行。

  (2)提高生产效率原则。为减少换刀次数,节省换刀时间,提高生产效率,应将需要用同一把刀加工的加工部位都完成后,再换另一把刀来加工其他部位,同时应尽量减少空行程。

  (2)先近后远。离对刀点近的部位先加工,离对刀点远的部位后加工,以便缩短刀具移动距离,减少空行程时间。此外,先近后远车削还有利于保持坯件或半成品的刚性,改善其切削条件。

  (3)内外交叉。对既有内表面又有外表面需加工的零件,应先进行内外表面的粗加工,后进行内外表面的精加工。

  (4)基面先行。用作精基准的表面应优先加工出来,定位基准的表面越精确,装夹误差越小。

  江苏省徐州技师学院从2003年开始招收数控车工技师,已累计为社会培养1000多名数控车工技师。在这10年的培训教学与考核中积累了一定经验,也存在着许多问题,值得我们思考。

  数控车工技师每年由江苏省技能鉴定部门统一安排在3月、5月、9月和11月共考核四次。各校根据自己的实际情况向市技能鉴定指导中心申报,市技能鉴定部门审核通过后,统一上报省技能鉴定指导中心,由省技能鉴定部门从题库统一抽取试题进行考核。省技能鉴定部门派考评人员督导,市技能鉴定部门具体实施。考核共分为论文答辩、理论考核和实操考核三个环节,每个环节独立考核,单独给分,以百分制形式进行,低于60分为不及格,三个环节均达到60分,技师才为考核过关,否则不予通过。

  1.论文答辩。论文答辩环节是技师考核的第一关,也是至关重要的一关,此关不及格,后面两关不予考核,取消考试资格。论文答辩小组一般有三名评委组成。学生陈述论文后,评委针对学生的论文对进行提问,问题既有论文内的内容,也有拓展知识。

  2.理论考核。理论考核时间为90分钟,满分100分,60分及格。题型有填空题、选择题、判断题、简答题、论述题及编程题等几部分组成。内容包括公差、制图、材料、软件、工艺、机床、夹具、编程和刀具等专业内容,知识面较广。

  3.实操考核。实操考核环节由机械加工工艺规程编制、数控车床编程、数控车床加工、零件自检和数控车床精度检测等五个模块组成。总分100分,60分及格,每个模块权重不同,但都要达到60%才为及格。

  (1)加工工艺规程编制模块。要求学生根据加工图纸,按照工序独立编制零件加工工艺规程,内容包括刀具、切削用量、工装和量具的选择等。时间为30分钟,分数占10%。

  (2)数控车床编程模块。要求学生根据图纸在计算机上独立绘制二维图形,自动生成加工程序,并进行仿线)数控车床加工。要求学生根据备料通知要求,把加工程序拷贝或传输到机床上进行独立加工,最终完成图纸要求的配合件。时间为240分钟,分数占50%。

  (4)零件自检模块。要求学生根据零件自检表规定的内容,对自己加工的零件尺寸、形位公差和表面粗糙度等进行客观检测。考评教师根据学生检测结果与实际结果之间的差值进行评分。时间包括在数控车床加工的240分钟内,成绩占10%。

  (5)数控车床精度检测模块。要求学生按照数控车床精度检测模块规定的内容进行实际检测,并作记录。考评教师根据学生检测方法和检测结果进行评分。时间为30分钟,成绩占10%。

  1.论文撰写方面。技工院校的生源质量相对不高,学生大都是未升入高中或大学的落榜生。他们文化基础知识薄弱,进入技工院校的目的就是想学一门技术,找份合适的工作;他们往往不重视文化知识的进一步学习,而只重视技能训练。文化课的教学学时较短,论文写作水平大多只停留在初高中的层次上,甚至更低。所以,要让这部分学生经过三至四年专业知识学习后再写出像样的论文,难度确实很大。不要说文学功底不牢,遣词造句不行,就是专业素材都很成问题。他们一是没有实际工作经验,只是在校内按教师要求进行零件的加工,二是不重视工艺的分析、经验的积累,三是没有技术革新的能力。他们的论文要么是书本内容的复制,要么是网上现成论文的下载,要么是教师编制工艺的抄写,根本没有创新。能够写出自己感想或体会的文章已实属不易,所以一次通过率往往不高。

  2.理论考核方面。数控车工技师理论考核牵涉的知识面非常广泛,几乎涵盖了在校学习的所有专业知识。这些知识点分散在10多门课程中,零散且不系统,又没有复纲,全靠教师的经验和学生平时的知识积累。往往经过几个月的紧张忙碌后,成绩还不是很理想,极大地挫伤了学生申报技师考核的积极性。

  3.实操考核方面。虽然学生平时很重视实训操作的训练,但由于实操考核环节模块较多,考前一周才能看到实操考核的备料通知单,只能凭教师的经验和学生的基础进行考核。如果平时没有扎实的基本功和识图、编程、工艺分析等方面的综合能力,在有限的时间内通过实操项目的考核难度确实很大,而且每个模块均要达到所占分数的60%以上,否则不能过关,所以总体过关率也不是很高。

  1.加强师资队伍建设。只有一流的师资,才能培养一流的技工,也才能生产一流的产品。在大力发展职业教育特别是技工教育的今天,一些学校只注重校园建设和硬件投入,却忽视了师资的培养。设备可以大量的购置,师资从何而来?作为学校领导,首先要重视师资队伍的建设,要重视在师资队伍建设中的投入;设备的购置、校园的建设是显性的,而师资的培养是隐性的,是潜移默化的,可能一时看不到效果,但只要制定合理的目标,选择合适的人员,并长期坚持不懈地培养,就会有大的收获。

  在数控铣削加工过程中,用户期望生产加工后的工件与设计人员所设计的图纸完全吻合一致,但这只是一个脱离实际的理论想法。在实际的生产加工中,由于受到加工操作规程、加工工艺系统、加工原理、加工测量、工件和刀具的材质、工件和刀具的温度、刀具受力变形、刀具磨损等因素的影响,实际生产加工后的工件与理论图纸会存在一定的偏差,进而产生了加工误差。

  一般来讲,一个完整的数控铣削加工系统主要由机床、夹具、刀具和工件构成,也可以称之为加工工艺系统。在实际的数控铣削加工过程中,存在很多影响因素引起加工误差,进而影响加工工件的质量。在前人研究的基础上,按照误差的来源可以将加工误差分为三类:几何误差、物理误差和其它误差,其中几何误差是指机床或夹具或刀具本身存在的误差和加工过程中由磨损而引起的误差;物理误差是指数控铣削加工工艺系统由于受热和受力而产生的弹性变形和塑性形变而引起的误差;其它误差包括的范围较大,随机性较强,主要是指加工工人在数控铣削加工操作过程中,由于采用哪一种加工原理、操作是否严格遵守规程、重新调整工艺系统、定位刀具或待加工工件的精确程度、测量的准确度和加工工人的实践经验等因素所引起的误差。

  [1]周德生.基于计算机仿真技术的铣削加工精度控制研究[D].武汉理工大学,硕士学位论文,2006.

  [2]苑辉.数控铣削加工物理建模与仿真[D].哈尔滨理工大学,硕士学位论文,2008.

  论文摘要:本文通过分析目前我国数控技术人才培养现状和企业对数控技术人才的素质要求,探讨数控技术应用岗位所需专业知识的结构,最后提出了对专业基础课,专业课程的教学课程及内容进行整合的基本思路。

  随着科学技术的发展,世界先进制造技术的兴起和不断成熟,对数控加工技术提出了更高的要求,目前我国制造业已开始广泛使用先进的数控技术,但掌握数控技术的机电复合型人才奇缺,数控编程、数控机床操作和维护人员更是不足。据调查目前我国高校数控方向的毕业生每人通常有4个以上的就业岗位可供选择,毕业生一次性就业率在95%以上。来自大学、高等职业技术院校的数控技术应用专业的毕业生,虽然具有一定的专业知识和动手能力,但缺乏工艺经验,难以满足某些企业对加工和维修一体化的复合型人才的要求。这主要是作为培养技术人才的高校、高职院校在加大培养数控人才的力度的同时,没有根据数控技术岗位需求的变化来相应的改变教学模式和教学内容,仍在延续传统教学模式所造成的。

  (1)金领层:这类人才需熟悉机械加工和数控加工工艺,具有熟练的数控编程能力、较高的数控设备操作能力和数控设备的维护、维修能力,且具有一定的实际经验和宽厚的综合理论知识,能自行完成数控系统的选型、数控机床机械机构的设计和控制系统的安装调试和维护,独立完成机床数控化改造等工作。

  (2)灰领层:具有较为系统的机械加工工艺理论知识,熟悉数控加工工艺的特点,能够完成数控程序编制和数控机床维护等工作。

  (3)蓝领层:具有手工编程和调试数控机床的能力,熟练的数控机床操作能力,了解自动编程和数控机床的简单维修,能够完成数控机床的操作、调试和维护等工作。

  本文从培养数控技术应用型通才的角度来探讨其岗位所需的专业知识结构,并依此为基础来讨论专业基础课和专业课程的设置及课程教学内容的整合。

  数控技术是用数字化信号对设备运行及其加工过程进行控制的一种自动控制技术。模拟控制系统中的控制信息是模拟量,而数字控制系统中的控制是数字量,在计算机技术迅速发展的推动下数控技术以其表达信息准确,可进行复杂信息处理且具有逻辑处理能力,使刚性机械设备具备了柔性。

  从机床控制技术的观点来看,数控技术的cnc系统把计算机引入数控系统,可利用计算机的数据处理能力方便地实现各种控制策略,用软件实现机床的开关量控制。当被加工对象的数字信息被送入到专用的或通用的计算机后,计算机对输入的信息进行处理与运算,发出各种指令来控制机床的伺服系统或其它执行元件,使机床自动加工出所需要的工件。数控机床就是将加工过程所需的各种操作和步骤,以及刀具与工件之间的相对位移量都用数字化的代码来表示。这使数控机床与其它自动机床具有了一个显著的区别:当加工对象改变时,除了重新装夹工件和更换刀具之外,只需要更换新的控制程序,不需要对机床硬件作任何调整或少量调整即可。

  从机械加工技术的观点来看,数控加工技术属于现代制造技术的范畴,是计算机技术、信息技术与机械技术交叉融合而形成的一门综合性新技术。数控机床,是数字控制技术嫁接到金属切削机床上的产物。数控机床的加工方法仍然是采用金属切削方法。因而,数控加工与传统机械加工的工艺规程从总体上说是一致的。由数控机床的成形运动的控制采用了计算机数字控制技术,不但能够使其成形运动实行两轴或多轴联动,使数控机床能够在两维和三维空间中实现任意曲面的加工,而且使机床结构大大简化,使数控机床所能采用的切削方法增多,加工工艺范围增大。因而数控加工工艺过程与传统加工工艺过程产生了较大差异,主要体现在:单台数控机床可使用多种切削加工方法、工艺范围增大,数控加工的工序内容比普通机加工的序内容复杂、工艺过程缩短,工艺装备种类和数量减少,装夹次数减少,加工精度和质量主要由机床保证,特别是加工中心(mc),可实现除定位基面以外的其它大部分表面的加工,机床柔性增大。数控加工工艺的制订不但涉及到传统机械制造工艺制定的基本理论知识,还包括加工原点的确定、工序内容的划分、刀具轨迹的确定、刀具的选择与使用和切削用量的选择等具体内容。

  从以上分析,数控的金领层应具备根据被加工对象的工艺特征和特殊要求,编制数控程序及调试、维护数控机床和使用数控机床进行加工的能力。

  从机床控制方面,数控的金领层应在电工电子、计算机原理及控制、计算机编程语言、数控原理及数控机床、数控软件及数控编程等方面具备扎实的基础知识;

  从机械加工方面,数控的金领层应在现代机械设计、机械加工工艺、金属切削理论、夹具、刀具和量具等方面具备扎实的基础知识;

  从机械加工技术和控制两个方面出发,数控技术应用所涉及的学科范围广、教学内容多、课程内容本身具有其系统性要求。怎样在有限的教学时间里,将所需的基本知识传授给学生,且能达到培养目标的要求,是课程体系建立和教学内容的确定过程中应解决的关键问题。因此,课程内容的合理安排和整合是必需的,也是至关重要的。

  通过对以上两方面知识的分析,职业教育数控培养方向的专业课程知识结构应以“机械制图和机械设计理论为起点,材料和塑性成形方法为基础,机械加工工艺为核心,数控技术为手段”这一基本认识来构建。根据课程理论的辩证适度原则、综合性与系统性相结合原则、统一性和多样性相结合原则;课时分配比例合理原则;开放性原则;超前性原则;理论性和实践性相结合原则,将机械领域与数控技术领域的基础知识整合,提出以下职业教育数控培养方向专业课程知识结构的建立思路。

  课程内容的选择以够用适度为原则,兼顾各课程的系统性。工程材料及热成型方法课程中,应从工程应用角度出发,阐明工程材料的基本理论及工程材料的成分,组织、结构与性能之间的关系,使学生具备根据零件的使用条件和性能要求合理选用工程材料的能力,根据所选材料合理设计零件结构的能力。介绍热加工的基本成型方法及工艺范围。

  关键词:数控车床;零件加工工艺中图分类号:G648文献标识码:B文章编号:1672-1578(2014)18-0278-01伴随着社会经济的快速发展,我国的数字控制技术也被大范围的应用在各个领域。对于学校来说,一些数控专业也在被重视的范围之内,所以要对数控工艺有清晰的了解,不断的提升专业化的工艺水平,服务学生。

  对于一些传统的加工在工艺上的变革来说,有一些定位和基准选择的问题是比较明显的。在对这些问题和差别进行了解之后,能够对加工的质量问题进行保证,同时也能够促进加工的顺利进行。

  在整体的数控加工过程中,会有一些设计基准和定位基准不相符合的问题出现,然而在工序基准和基本的测量基准问题上,却是统一的。这样就会杜绝一些尺寸链解所导致的误差问题出现。对于一些数控的加工在基本的编制问题上来说,主要把各段的尺寸和形状进行确定。确保形位公差和尺寸公差。所以即便是在基准没有统一或者是重合的现象出现时,在对工件在精度方面的影响也是很小的。

  对于定位的误差来说,主要是由基准的误差和不重合的误差两方面所构成。对于基准误差来说,如果要进行一些批量的生产,那么在很大程度上对零件的影响是很大的。然而现实情况是对于数控的加工来说,在夹具频繁使用的情况已经不是很多,对于一些零件来说,在基本的加工之前一定要有对刀的过程。主要是通过实际的表面来进行对刀处理,在具体的加工中,也很少有换位和装夹的现象出现。而且对于改革后的加工工艺来说,定位误差也已经不是很关键。

  1.1车床的基本加工对象。基本的数控车床加工对象有:粗糙度高的一些回转体加工零件,精度比较高的加工零件,还有一些螺纹和表面比较复杂的零件等。

  1.2车床加工的内容。待数控车床的合适加工零件选好之后,还要对所选择的加工零件进行图样分析,对加工的技术和内容进行明确。把加工的零件方案确定下来,还有工艺的加工路线,以及程序的调整和工序的设计等都要进行确定。

  1.3车床加工在路线方面的拟定。作为工艺的重要规程来说,工艺在路线方面的拟定也是非常重要的加工内容。基本包括了:加工的基本方法,不同的加工阶段,工序的安排和划分等。

  1.3.1车床加工方法上的选择。对于不同的数控车床来说,都有不同的加工方法,根据不同的零件加工在粗糙,精度,形状和材料尺寸上的不同选择来决定,来选择合适的加工方案和方法。

  1.3.2不同阶段的加工划分。对于半精细的加工阶段来说,主要的目的就是在加工的表面有一定的精度要求,还要留出多少不一的精加工剩余量;对于粗加工的那一阶段来说,主要是把一些毛坯上的多余部分切除,这样经过加工后的毛坯无论是在尺寸上还是在形状上都能够和零件的成品比较接近。对于一些精加工来说,主要是为了能够确保表面所规定的精度尺寸和一些粗糙度方面的要求。最后的目的就是为了能够从整体上来确保加工完成后的质量问题。对于一些纯粹的加工来说,在对零件的表面粗糙度和零件精度的要求上,就要进行必要的光整来进行加工。最后的目的就是为了能够减小粗糙度,从整体上来提高尺寸的精度。

  1.3.3工序划分的基本原则。主要有两种,第一种是工序的分散划分原则,主要是把工序分散在工序比较多的地方进行加工,但是在工序的主要加工内容上却极少。第二种就是工序集中的基本原则,主要是指在不同的工序中,要有很多不同的加工内容进行选择,在环节上减少工序的总数。

  2.1图纸的尺寸要为编程服务。 对于数控的加工图纸来说,基本的都是提供了坐标的尺寸,还有的就是用同一个标准来确定尺寸。对于手工的基本编程来说,对于每个节点上的坐标都要清晰的计算,在整个自动编程的过程中,对于一些零件的构成上要做出定义。

  2.2机构的工艺性和数控特点相符。对于零件来说,在尺寸和类型上,最好是用统一的,这样就可以减少换刀和刀具规格的次数,从简单上来说,可以对编程的过程起到简化的作用。对于数控加工来说,最好是用一定的基准来进行定位。避免由于工件在加工过程中由于安装所造成的一些形位错误。在零件的加工精度上进行分析,对于一些形位的公差,尺寸的公差,都要得到具体的精确保证,看是否有一些多余的尺寸或者是其他的一些能够给工序安排造成影响的问题等。

  我国的数字控制技术也被大范围的应用在各个领域。在对数控车床的工艺总结基础之上,通过一些具体的实例,来对数控车床的零件加工进行分析。对于数控的加工来说,工艺的设计环节是编程中比较关键的,其本身的合理性也影响到了零件加工后的质量问题,还有使用效率问题上。所以要选择一些高效又合理的加工路线和工艺方法。对数控程序的质量进行严格的把关,从整体上提高加工的效率和质量问题,而且对经济效益的提高也有重要的现实意义。参考文献:

  [2]李庆兴.异型轧辊数控车床切削进给系统的设计理论及其关键技术研究[D].河北工业大学,2009(06)

  [3]叶政茂. 基于数控车床的QJ0000型四点接触球轴承内圈锻造及车削加工工艺的改进[D].第四届十三省区市机械工程学会科技论坛暨2008海南机械科技论坛论文集,2008(10)

  随着计算机在制造型企业中的应用,通过计算机进行工艺的辅助设计已成为可能。CAPP 技术的应用为提高工艺文件的质量,缩短生产准备周期,提高信息处理能力和企业各部门间信息的交流能力,并为广大工艺人员从繁琐、重复的劳动中解放出来提供一条切实可行的途径。应用 CAPP 技术将缩短设计周期,对修改和变更设计能快速做出响应;工艺人员的经验能够得到充分的积累和继承,减小编制工艺文件的工作量和产生错误的可能性。应用计算机辅助工艺设计的必要性已被越来越多的企业所认识。

  由于汽车覆盖件模具结构的多样性和复杂性,不同部位的加工面和加工方式均不相同。针对汽车覆盖件模具加工工艺性的区别,汽车覆盖件模具可以分为不同的结构特征,不同的结构特征常有其特定的相似加工方法、走刀路线、工艺流程和工艺参数。对于大中型汽车覆盖件模具来说,由于常见的冲压件冲压工艺主要有拉深、修边、翻边、整形等几种冲压工序,则相应的模具类型也主要以拉延模、修边模、整形模等几种主要类型及其复合模具为主。这些大中型模具中,同一类模具的结构大同小异数控加工,而同一种结构特征的加工工艺大致相似。

  在制定该类型面结构特征加工工艺时,主要考虑如下: 在完成模具的定位和夹紧后,首先要对工件进行试加工,以检测毛坯各加工部位的切削余量是否均匀。因为大型模具型面毛坯体积均较大且以铸件为主,加工余量常不够均匀,直接对模具型面进行整个表面粗加工,会使刀具载荷变化较大,引起机床振动。检测后,对模具型面毛坯进行粗加工。之后,进行清角加工,习惯上把这道工序称为粗清角加工。主要是为了去除粗加工后毛坯角落处刀具未能加工到的材料,保证在半精加工过程中,加工量比较均匀,有利于提高半精加工的速度,达到提高效率的目的。而半精加工则是把前道工序加工后的残留加工变得平滑,同时去除拐角处的多余材料,在工件加工面上留下一层比较均匀的余量,为精加工做准备。半精加工后仍需进行清角加工,称为半精清角加工,主要是为去除半精加工后刀具未能加工到的残留余量,为精加工做准备;精加工的目的是按照零件的设计要求,达到较好的表面质量和轮廓精度,是实现模具型面最终形状最关键的一步。最后,对于某些型面曲率半径小于精加工刀具半径的地方,还需进行清角加工,去除精加工后刀具未能加工到的残留余量,使模具型面的表面质量和轮廓精度符合设计要求。

  为了实施工艺模版的开发,以 PowerMILL 软件为开发平台,利用其方便的工艺模版开发接口,可以灵活、快捷地开发出汽车覆盖件模具加工工艺模版 工艺模版的开发,根据每种结构特征的加工工艺性,首先确定它们的加工工艺流程,根据每一步加工工艺的特点,结合 PowerMILL 软件丰富的加工策略,找到与之相匹配的加工策略,并定义合理的加工工艺参数,以模版形式保存在 PowerMILL 软件的加工策略中。把每种结构特征合理的工艺流程所对应的加工策略和工艺参数以上述方式保存在相同的工艺模版中,即可完成汽车覆盖件模具加工工艺模的开发。 由于每种汽车覆盖件模具结构特征的工艺模版开发过程相同,现以上节所提及的拉延模模具型面加工工艺模版的开发为例,来详述工艺模版的开发。 首先,根据拉延模模具型面加工工艺的特点,在 PowerMILL 软件环境中,定义每一步工艺流程的加工策略及其合理的工艺参数。然后,将每一步的加工策略与工艺参数以模版的形式保存在 PowerMILL 软件加工策略的同一个模版目录中,即可完成汽车覆盖件拉延模模具型面加工工艺模版的开发。为汽车覆盖件拉延模模具型面每一步工艺流程对应的加工策略及加工工艺参数情况。

  大中型模具型面的数控加工,模具表面所留的加工余量较大,所以型面分粗加工、半精加工、精加工3道工序完成。为了提高编程效率,粗加工和半精加工一般采用多曲面连续加工刀具运动轨迹的生成方法,精加工可根据实际加工要求,采用单曲面刀具运动轨迹的生成方法或多曲面连续加工刀具运动轨迹的生成方法。

  汽车主模型的数控加工,由于采用了可加工塑料作为原料,使这种主模型具有变形小、便于保存、切削加工性能好等特点。为了确保主模型的加工质量,主模型一般采用粗、精加工两道工序完成。

  由于泡沫塑料模型精度要求低,而且泡沫材质松软,泡沫塑料模型可采用一次成形的加工方法。

  为了生成加工所需的刀具运动轨迹,必须首先弄清楚与此有关的一些概念,并在此基础上,合理地确定加工工艺参数。

  在数控编程中,刀具各部分的几何参数可用两个选项来设定。第一选项用来确定刀体类型,包括圆柱形和圆锥形刀具;第二个选项用来确定刀头类型,包括平头、球形和圆角。定义刀具几何形状的参数包括如下几项:

  (1)刀锥角度:用于定义圆锥刀具的刀具轴线与刀具斜侧刃的夹角,用角度表示。当角度为零时,就表示圆柱铣刀。

  (2)刀具半径:对圆柱铣刀而言,指刀具圆柱形工作截面的半径;对圆锥铣刀而言,指圆锥刀体部分与刀头相接处的圆的半径。

  (3)圆角半径:对具有球头的圆角头的刀具来说,它是指球的半径或圆角半径。

  (4)刀具高度:用来表示刀具切削部分的高度值。在生成刀具运动轨迹的编程中,刀具选择合理与否,关系到零件的加工精度、效率及刀具的使用寿命。刀具应根据被加工零件的几何形状特性、材料的机械加工性能、切削余量、现存刀具的规格等进行综合考虑。

  对曲面的三轴数控加工而言,刀具的运动是通过对3个坐标轴进行线性插补来完成的,这意味着,刀具运动轨迹是由相应的直线段组成。为了确保被加工零件的加工精度,必须根据实际加工要求,由编程人员给定合理的加工容差值。该值表示实际切削轨迹偏离理论轨迹的量。有下列3种定义容差的方式可供编程人员选用:

  (2)指定外容差值,它表示由误差所产生的剩余材料被留在零件表面上作余量。

  在数控编程中,切削间距的选择是非常重要的,它关系到被加工零件的精度和加工费用。切削间距小,则加工精度高,钳工的研修工作量小,但所需加工时间长;切削间距大,则加工精度低,钳工的研修工作量大,研修后模具型面失真性较大,难以保证模具的加工精度,但所需加工时间短。由此可见,切削间距必须根据加工精度要求及占用数控机床的机时来综合考虑。对于手工劳动费用昂贵的发达国家来说,切削间距可以选得很小。例如采用直径为20mm的刀具进行模具表面的数控加工,间距可选为0.5mm,甚至更小一些,此时留在模具表面的手工研修量仅0.005mm左右,只需对模具表面稍加抛光即可。但其数控加工的时间很长,这对数控加工费用相对较昂贵的我国来说,显然是不合理的。因此,切削间距必须根据国情和厂情来合理地选择。

  IM电竞

  近年来,模具制造业在我国迅速发展,汽车模具制造需求量也随之增加,所以,汽车模具制作是汽车制造的重要阶段,希望通过这篇论文的讲解,给汽车生产商和制造商有所帮助。

  [1]李海平.国内模具工业的现状及研发趋势[J].工业技术,2006,(26):28-29。

  数控铣床具有生产效率和加工自动化程度高,零件的加工精度和产品的质量稳定性好,能完成许多普通机床难以加工或根本无法加工的复杂型面加工,几乎不要专用的工装卡具,在减少次品,提高经济效益和大大减轻操作工人的劳动强度等方面具有一系列优点。随着制造业的迅速发展,大力发展以数控机床为先导的装备制造业已成为我国政府的一项产业政策,将对数仅能增加企业的效益,而且还有助于提高我国制造业的整体素质和加快建设制造强国的进程。

  2.1换刀次数及位置不合理。利用数控铣床进行批量生产、特别是大批量生产时,在保证加工质量的前提下,提高加工效率、确保加工过程的稳定性是获得良好经济效益的基础。数控铣削批量加工时,选择简便的换刀方式,是减少换刀辅助时间、减少机床磨损、降低加工成本的有效途径。改进换刀点设置是为达此目的进行的有效尝试之一。为此,在夹具选择、走刀路线安排、刀具排列位置和使用顺序等方面都要精细分析、优化设计,改进换刀点设置,减少运行成本,提高加工效率。

  2.2编程技巧不强。程序的效率直接影响着机床的工作效率,所以优化编程质量是提高数控机床工作效率的一个重要方法。首先,熟悉机床的指令,充分开发机床的内部功能,寻找高效的编程和加工方法。其次,大力推广计算机编程,加强计算机切削模拟,提高程序的可靠性,从而减少或取消在数控铣床上调试程序的时间。再次,合理编程,尽量减少机床走空刀的情况。

  (2)很多公司所面临的通常都是多品种、小批量、短生产周期的生产任务,因此要求工艺系统有较高的响应速度。

  (4)薄壁、易产生加工变形。存在大量的薄壁、深腔结构,为典型的弱刚性结构。

  (5)刀具及切削参数选用困难。由于刀具工业的发展赶不上新材料的开发和应用步伐,又缺少加工切削数据库的支持,如何合理选择刀具和科学选用加工参数成为工艺技术的一个难点。

  3.1合理选择切削用量。在切削加工中,切削用量的选择是否合理,直接影响着加工质量,加工成本和生产率。如果切削用量选择得当,便能充分发挥机床和刀具的功能,以取得生产的最大效益,倘若选择不当,会造成很大的浪费或导致生产事故,所以必须合理选取。

  当实践证明,当切削速度提高10倍,进给速度提高20倍,远远超越传统切削后,切削机理发生了根本变化。其结果是:单位功率金属切除率提高了30%~40%,切削力降低了30%,刀具切削寿命提高了70%,大幅度降低了留工件上切削热,切削振动几乎消失;切削加工发生了本质性飞跃。目前机床情况来看,要充分发挥先进刀具高速加工能力,需采用高速加工,增大单位时间材料被切除体积(材料切除率Q)。

  选择合理切削用量同时,尽量选择密齿刀(刀具每英寸直径上刀齿数≥3),增加每齿进给量,提高生产率及刀具寿命。有关试验研究表明:当线m/min,每齿进给为0.04mm时,进给速度为341m/min,刀具寿命为30件。将切削速度提高到350m/min,每齿进给为0.18mm,进给速度则达到2785m/min,是原来加工效率817%,而刀具寿命增加到了117件。

  3.2合理选择加工方式。加工方式可分为顺铣与逆铣两种。而加工中心机械传动系统和结构本身就有较高精度和刚度,相对运动面摩擦系数小,传动部件间隙小,运动惯量小,并有适当阻尼比,可以采用顺铣方式加工,以提高加工效率。此外,加工经验,顺铣比逆铣时刀具寿命要提高1倍多,采用不对称立铣方法,刀具寿命可提高2~3倍。

  3.3选择合理加工路线。数控机床特别是轴以上加工中心,一般是一次装夹、多方位加工,都有刀库,可自动更换刀具,一次加工成形。确定正确简洁加工路线,是保证加工质量和提高效率基础。编程时确定加工路线原则主要有:应能保证零件加工精度和表面粗糙度要求;应尽量缩短加工路线,减少刀具空程移动时间;应使数值计算简单,程序段数量少,以减少编程工作量。如位置精度和尺寸公差要求高孔加工来说,孔直径小于~加工工艺路线为:钻中心孔、钻孔、扩孔、铰孔,而孔直径大于~加工工艺路线则为钻孔、扩孔、粗镗、孔精、镗孔。

  此外,对加工工艺综合应用,减少工件安装次数,可有效缩短搬运和装夹时间。例如将五面五轴加工中心与立车复合构成万能加工中心,可实现一次装卡完成零件大部分(或全部)加工。

  3.4合理选择装夹方式。鉴于数控加工时工序集中,对零件进行定位、夹紧设计以及夹具选用和设计等问题上要全面考虑。首先,应尽量采用组合夹具,通用夹具柔性差、定位精度相对较低,当产品批量比较大、加工精度要求高时可以设计专用夹具。其次,选择工装时应有利于刀具交换和测量,避免发生碰撞干涉。

  随着数控铣床在制造业中广泛应用,数控铣床在现代加工中将扮演着越来越重要的角色,数控铣削加工的理论研究已比较成熟,但在铣削加工过程、高速铣削、精密铣削机床等方面我们国家仍然存在不足,和美、日、德等发达国家之间存在着较大的差距,由于数控铣床是一种相对高费用的加工手段,为了同时满足加工质量,提高加工效率,降低生产成本,还必须对数控铣床工艺参数进行优化。

  控机床的发展产生重大的影响。在制造业中用好数控铣床提高数控铣床的利用率具有重要的现实意义,它不

  本文要讨论及加工的零件—阀杆的加工,此类零件看似工艺简单,但是要求表面精度高,用普通车削的方式很难达到精度要求。见图1所示:

  (2)淬火—根据淬火守则要求,将工件淬火后达到图纸要求硬度HRC50-55。

  关于数车、淬火、喷砂的过程及方法在本篇论文不做详细介绍。由图可看出,此件加工难度在于淬火后硬度比较高HRC50-55。车削达不到光洁度要求,只能采取磨削加工。但是这个工件磨削部位是斜面和圆弧,而且有同轴度要求,必须一次装夹完成。这就需要在一片砂轮上修整出要磨削的形状,还要保证形位公差,尺寸公差,光洁度要求等。所以这就需要用到数控磨削中的成形砂轮技术,下面就该件的磨削加工做以详细的介绍。

  根据工件的材料40Cr,淬火后的硬度HRC50-55,我们选择砂轮的型号是54A80H8V604W,500x40x203.2这个是贵金刚砂粒度适中的砂轮,最大线修整砂轮工具的选择

  因为要磨的零件多斜面多曲面,修整工具修整砂轮时不能干涉,所以选择CVD三角形刀片,刀尖角0.125mm。

  砂轮修整好后,安装工件,用砂轮确定工件零点,建立砂轮与工件的坐标关系。由于该砂轮是成形砂轮,所以在编程过程中要注意砂轮形状的位置关系。用阀口斜面登记工件零点。1点z值为Z零点,2点x值为X零点,输入机床。

  成形砂轮只能采用直接切入磨削方式,第一段1-8点的斜面阀口磨削数值确定比较简单,因为是用这段登记的工件零点。第一段X值为20,Z值为0,第二段弧形部分X,Z值确定比较麻烦,要考虑他们的形状之间的差值,不能直接输入。计算如下:X值为10+(图2中4点x坐标—9点x坐标)×2=12.36,Z值为48-1-2.2-4-10点坐标+4.2=22。以上为磨削两段外圆的X,Z确定方法。

  工件加工完成后,用千分尺、三坐标测量形位公差,用投影仪测量形状的准确性,用粗糙度测量仪测量光洁度。经以上设备检验,此种加工方法完全符合图纸的要求IM电竞,实现该工件的高效、精确加工。


网站地图 网站地图