IM电竞目前,数控机床品种已经基本齐全,规格繁多,据不完全统计已有400多个品种规格。可以按照多种原则来进行分类。但归纳起来,常见的是以下面4种方法来分类的。
(1) 一般数控机床。这类机床和传统的通用机床种类一样,有数控的车、铣、 镗、钻、磨床等等, 而且每一种又有很多品种IM电竞,例如数控铣床中就有立铣、卧铣、工具铣、龙门铣等。这类机床的工艺可能性和通用机床相似,所不同的是它能加工复杂形状的零件。
(2) 数控加工中心机床。这类机床是在一般数控机床的基础上发展起来的。它是在一般数控机床上加装一个刀库(可容纳10-100多把刀具)和自动换刀装置而构成的一种带自动换刀装置的数控机床(又称多工序数控机床或镗铣类加工中心,习惯上简称为加工中心——Machining Center), 这使数控机床更进一步地向自动化和高效化方向发展 。
数控加工中心机床和一般数控机床的区别是:工件经一次装夹后,数控装置就能控制机床自动地更换刀具,连续地对工件各加工面自动地完成铣 ( 车 ) 、镗、钻、铰及攻丝等多工序加工。这类机床大多是以镗铣为主的,主要用来加工箱体零件。它和一般的数控机床相比具有如下优点:
① 减少机床台数, 便于管理,对于多工序的零件只要一台机床就能完成全部加工,并可以减少半成品的库存量;
② 由于工件只要一次装夹,因此减少了由于多次安装造成的定位误差,可以依靠机床精度来保证加工质量;
④ 由于零件在一台机床上一次装夹就能完成多道工序加工,所以大大减少了专用工夹具的数量,进一步缩短了生产准备时间。
由于数控加工中心机床的优点很多,深受用户欢迎,因此在数控机床生产中占有很重要的地位。
另外还有一类加工中心,是在车床基础上发展起来的,以轴类零件为主要加工对象。除可进行车削、镗削外,还可以进行端面和周面上任意部位的钻削、铣削和攻丝加工。这类加工中心也设有刀库,可安装4-12把刀具,习惯上称此类机床为车削中心(TC:Turning Center) 。
(3) 多坐标数控机床。有些复杂形状的零件,用三坐标的数控机床还是无法加工,如螺旋桨、飞机曲面零件的加工等,需要三个以上坐标的合成运动才能加工出所需形状。于是出现了多坐标的数控机床,其特点是数控装置控制的轴数较多,机床结构也比较复杂,其坐标轴数通常取决于加工零件的工艺要求。现在常用的是4,5,6坐标的数控机床。图1—3为五轴联动的数控加工示意图。这时,x,y,z 三个坐标与转台的回转、刀具的摆动可以同时联动,以加工机翼等类零件。
按照能够控制的刀具与工件间相对运动的轨迹,可将数控机床分为点位控制数控机床、点位直线控制数控机床、轮廓控制数控机床等。现分述如下:
(1) 点位控制数控机床。 这类机床的数控装置只能控制机床移动部件从一个位置 ( 点 ) 精确地移动到另一个位置 ( 点 ) ,即仅控制行程终点的坐标值,在移动过程中不进行任何切削加工,至于两相关点之间的移动速度及路线则取决于生产率。为了在精确定位的基础上有尽可能高的生产率,所以两相关点之间的移动先是以快速移动到接近新的位置,然后降速 1-3 级,使之慢速趋近定位点,以保证其定位精度。
这类机床主要 数控坐标镗床、数控钻床、数控冲床和数控测量机等,其相应的数控装置称之为点位控制装置。
(2) 点位直线控制数控机床。 这类机床工作时,不仅要控制两相关点之间的位置 (即距离),还要控制两相关点之间的移动速度和路线(即轨迹)。其路线一般都由和各轴线平行的直线段组成。它和点位控制数控机床的区别在于:当机床的移动部件移动时,可以沿一个坐标轴的方向(一般地也可以沿45°斜线进行切削,但不能沿任意斜率的直线切削)进行切削加工,而且其辅助功能比点位控制的数控机床多,例如,要增加主轴转速控制、循环进给加工、刀具选择等功能。
这类机床主要有简易数控车床、数控镗铣床和数控加工中心等。相应的数控装置称之为点位直线) 轮廓控制数控机床。这类机床的控制装置能够同时对两个或两个以上的坐标轴进行连续控制。加工时不仅要控制起点和终点,还要控制整个加工过程中每点的速度和位置,使机床加工出符合图纸要求的复杂形状的零件。它的辅助功能亦比较齐全。
这类机床主要有数控车床、数控铣床、数控磨床和电加工机床等。其相应的数控装置称之为轮廓控制装置(或连续控制装置) 。
数控机床按照对被控制量有无检测反馈装置可以分为开环和闭环两种。在闭环系统中,根据测量装置安放的位置又可以将其分为全闭环和半闭环两种。在开环系统的基础上,还发展了一种开环补偿型数控系统。
(1) 开环控制数控机床。在开环控制中,机床没有检测反馈装置(见图1—4)。
,所以机床加工精度不高,其精度主要取决于伺服系统的性能。 工作过程是: 输入的数据经过数控装置运算分配出指令脉冲,通过伺服机构(伺服元件常为
)使被控工作台移动。这种机床工作比较稳定、反应迅速、调试方便、维修简单,但其控制精度受到限制。 它适用于一般要求的中、小型数控机床。(2) 闭环控制数控机床。由于开环控制精度达不到精密机床和大型机床的要求,所以必须检测它的实际工作位置,为此,在开环控制数控机床上增加检测反馈装置,在加工中时刻检测机床移动部件的位置,使之和数控装置所要求的位置相符合,以期达到很高的加工精度。
闭环控制系统框图如图1—5所示。 图中A为速度测量元件, C为位置测量元件。当指令值发送到位置比较
转动,通过A将速度反馈信号送到速度控制电路,通过C将工作台实际位移量反馈回去,在位置比较电路中与指令值进行比较,用比较的差值进 行控制,直至差值消除时为止,最终实现工作台的精确定位。这类机床的优点是精度高、速度快,但是调试和维修比较复杂。其关键是系统的稳定性,所以在设计时必须对稳定性给予足够的重视 。图1—5 闭环控制系统框图
装置。 半闭环控制数控机床。半闭环控制系统的组成如图1—6所示。图1—6 半闭环控制系统框图
机 A 和光电编码盘 B( 或旋转变压器 ) 等间接检测出伺服电机的转角,推算出工作台的实际位移量,图 1—6 半闭环控制系统框图用此值与指令值进行比较,用差值来实现控制 。 从图 1—6 可以看出,由于工作台没有完全包括在控制回路内,因而称之为半闭环控制。这种控制方式介于开环与闭环之间,精度没有闭环高,调试却比闭环方便。
(4) 开环补偿型数控机床。将上述三种控制方式的特点有选择地集中起来,可以组成混合控制的方案 。这在大型数控机床中是人们多年研究的题目,现在已成为现实。 因为,大型数控机床,需要高得多的进给速度和返回速度,又需要相当高的精度。如果只采用全闭环的控制,机床传动链和工作台全部置于控制环节中,因素十分复杂,尽管安装调试多经周折,仍然困难重重。为了避开这些矛盾,可以采用混合控制方式。在具体方案中它又可分为两种形式:一是开环补偿型;一是半闭环补偿型。这里仅将开环补偿型控制数控机床加以介绍。
图1—7为开环补偿型控制方式的组成框图。它的特点是:基本控制选用步进电机的开环控制伺服机构,附加一个校正伺服电路。通过装在工作台上的直线位移测量元件的反馈信号来校正机械系统的误差。
数控机床若按其实现数控逻辑功能控制的数控装置来分,有硬线(件)数控和软线(件)数控两种。
(1) 硬线数控(称普通数控,即NC)。 这类数控系统的输入、插补运算、控制等功能均由
或分立元件等器件实现。一般来说,数控机床不同,其控制电路也不同,因此系统的通用性较差,因其全部由硬件组成,所以功能和灵活性也较差。这类系统在 70 年代以前应用得比较广泛。
(2) 软线数控(又称计算机数控或微机数控,即CNC或MNC)。 这类系统利用中、大规模及超大规模集成电路组成 CNC 装置,或用微机与专用集成芯片组成,其主要的数控功能几乎全由
来实现, 对于不同的数控机床,只须编制不同的软件就可以实现, 而硬件几乎 可以通用。因而灵活性和适应性强,也便于批量生产,模块化的软、硬件,提高了系统的质量和可靠性。所以,现代数控机床都采用 CNC 装置。阅读全文
是一种技术含量很高的机电一体化设备,采取正确方式开机调试是十分关键的,这在很大程度上决定了
看着国内这个厉害了,那个厉害了,要不是华为中兴卡脖子等事件给敲响了警钟,搞房地产、搞互联网、搞金融发了财的那帮人还在制造气氛,全民还沉浸在厉害了的高科技中! 那作为工业之母的
。该控制系统能够逻辑地处理具有控制编码或其他符号指令规定的程序,并将其译码,用代码化的数字表示,通过信息载体输入
的故障各种各样、千奇百怪,所以故障原因也是形形。根据本人多年的维修经验,总结了一些常见的
可靠性技术的高低直接影响着整个国家制造业的发展进度。自本世纪初我国一直处于世界
是归纳运用核算机、主动操控、主动查看及精细机械等高新技能的商品,是技能布满度及主动化程度很高的典型机电一体化加工设备。它与一般
设备:由CPUIM电竞、存储器、总线、功用部件和相应软件构成的专用核算机。作用为将加工程序译码轨道核算(速度核算)、插补核算、抵偿核算,向各坐标的伺服驱动体系 分配速度、位移指令 。这一有些是
的方位应远离振源应避免光直接照耀和热凹凸的影响,避免湿润和气流的影响。如
的主轴部件包含主轴、主轴的支承轴承和设备在主轴上的传动零件等。主轴部件是
结构的特点与相关功能,对动作文本与报警文本进行编制,以此实现监控工作。如果
。该控制系统能够逻辑地处理具有控制编码或其他符号指令规定的程序,并将其译码,用代码化的数字表示,通过信息载体输入
价格还是比较贵的,毕竟属于定制技术型产品,需要的技术实力、研发成本都很高,无论购买
产品的生产,对用户来说,可以很快进行产品结构的调整和扩大产能,并且可以大大降低
+自动上下料机器人一体机,一般自动上下料机器人是由六轴机器人或者桁架机械手组成,无需人工作业,故称之为智能化
在发展的过程中,柔性夹具是一个非常有前景的发展方向。 在我国机械加工行
(系统)进行交互的工具,主要有显示装置、NC键盘数控加工、MCP、状态灯、手持单元等部分组成。
繁多,有电气、机械、液压、气动等部分的故障,产生的原因也比较复杂。目前国内使用的
设备是具有相当难度工作。掌握了机械结构及电气控制原理同时,必须合理分析,灵活运用,善于总结,才能起到事半功倍收效。逐渐缩小故障范围
的检测装置除了应满足对传感器的一般要求之外,还应满足下列要求: ① 工作可靠。抗于扰能力
的电磁兼容设计摘要:从电磁兼容的电磁原理出发,分析了电磁辐射、传导耦合和瞬态场等干扰信号的传输和影响途径,介绍了
的类型,首先要确定企业所需加工产品的技术要求和工艺规范,根据工艺流程和生
坐标系三坐标轴X、Y、Z及其正方向用( )判定,X、Y、Z各轴的回转运动及其正方向+A、+B、+C分别用( )判
?它是由哪几部分组成?各部分作用是什么?1.2 NC与CNC的区别是什么?1.3
的分类a)按加工用途分类b)按机械加工的运动轨迹分类c)按伺服系统的控制原理分类
报警的故障维修分析 故障现象:一台配套OKUMA OSP700,型号为XHAD765的
是机电一体化的产品,它包含了机械技术、计算机与信息处理技术、系统技术、自动控制技术、传感与检测技术、伺服传动技术,
龙门坐标同步研究 本文简要介绍了采用SINUMERIK 840D系统及其SIMODRIVE 611D伺服驱动系统的
龙门坐标同步研究 本文简要介绍了采用SINUMERIK 840D系统及其SIMODRIVE 611D伺服驱动系统的
信息集成系统中运用基于角色的访问控制技术,实现权限的清晰分明和最小化原则,防止权限滥用。有效地解决了
的故障率随时间变化的规律可用图6—1所示的浴盆曲线表示。在整个使用寿命期,根据
的伺服驱动系统按其用途和功能分为进给驱动系统和主轴驱动系统;按其控制原理和有无位置
直线运动的坐标轴X,Y,Z按照ISO和我国的JB3051—82标准,规定成右手直角笛卡
(Numerical Control Machine Tools)是指采用数字形式信息控制的
旋转变压器 旋转变压器感应同步器 感应同步器光栅 光栅磁栅 磁栅编码盘 编码盘
绪论:插补与刀补计算原理 插补与刀补计算原理CNC CNC系统结构及控制方法 系统结构及控制方法检测装置 检测装置
很多。规格不一,们不同的角对其进行了分类。 分别有机械运动轨迹分类,按
参观实验一、项目编号:二、实验课时:2三、主要内容及目的1.实验内容参观各类
常用刀具及工具系统5.3 刀具测量与调整5.4 数 控 车 床 刀 架5.5 加 工 中
伺服系统概述4.2 直 流 伺 服 系 统 4.3 交 流 伺 服 系 统4.4 位 置 检 测 装 置4.1