IM电竞在数控机床上由于机床空间及机床的其他局限了数控加工的灵活性,这样就要求我们要懂得如何改进加工工艺,提高数控机床的应用范围和加工性能。从而达到提高生产效率和产品质量。 数控加工作为一种高效率高精度的生产方式,尤其是形状复杂精度要求很高的模具制造行业,以及成批大量生产的零件。因此数控加工在航空业、电子行业还有其他各行业都广泛应用。然而在数控加工从零件图纸到做出合格的零件需要有一个比较严谨的工艺过程,必须合理安排加工工艺才能快速准确的加工出合格的零件来,否则不但浪费大量的时间,而且还增加劳动者的劳动强度,甚至还会加工出废品来。
一般数控机床的加工工艺和普通机床的加工工艺是大同小异的,只是数控机床能够通过程序自动完成普通机床的加工动作,减轻了劳动者的劳动强度,同时能比较精准的加工出合格的零件。由于数控加工整个加工过程都是自动完成的,因此要求我们在加工零件之前就必须把整个加工过程有一个比较合理的安排,其中不能出任何的差错,否则就会产生严重的后果。
数控机床一般由输入输出设备、CNC装置(或称CNC单元)、伺服单元、驱动装置(或称执行机构)、可编程控制器PLC及电气控制装置、辅助装置、机床本体及测量反馈装置组成。
⑴机床本体。数控机床的机床本体与传统机床相似,由主轴传动装置、进给传动装置、床身、工作台以及辅助运动装置、液压气动系统、系统、冷却装置等组成。但数控机床在整体布局、外观造型、传动系统、刀具系统的结构以及操作机构等方面都已发生了很大的变化,这种变化的目的是为了满足数控机床的要求和充分发挥数控机床的特点。
⑵CNC单元。CNC单元是数控机床的核心,CNC单元由信息的输入、处理和输出三个部分组成。CNC单元接受数字化信息,经过数控装置的控制软件和逻辑电路进行译码、插补、逻辑处理后,将各种指令信息输出给伺服系统,伺服系统驱动执行部件作进给运动。
⑶输入/输出设备。输入装置将各种加工信息传递于计算机的外部设备。在数控机床产生初期,输入装置为穿孔纸带,现已淘汰,后发展成盒式磁带,再发展成键盘、磁盘等便携式硬件,极大方便了信息输入工作,现通用DNC网络通讯串行通信的方式输入。 输出指输出内部工作参数(含机床正常、理想工作状态下的原始参数,故障诊断参数等),一般在机床刚工作状态需输出这些参数作记录保存,待工作一段时间后,再将输出与原始资料作比较、对照,可帮助判断机床工作是否维持正常。
⑷伺服单元。伺服单元由驱动器、驱动电机组成,并与机床上的执行部件和机械传动部件组成数控机床的进给系统。它的作用是把来自数控装置的脉冲信号转换成机床移动部件的运动。对于步进电机来说,每一个脉冲信号使电机转过一个角度,进而带动机床移动部件移动一个微小距离。每个进给运动的执行部件都有相应的伺服驱动系统,整个机床的性能主要取决于伺服系统。
⑸驱动装置。驱动装置把经放大的指令信号变为机械运动,通过简单的机械连接部件驱动机床,使工作台精确定位或按规定的轨迹作严格的相对运动, 最后加工出图纸所要求的零件。和伺服单元相对应,驱动装置有步进电机、直流伺服电机和交流伺服电机等。伺服单元和驱动装置可合称为伺服驱动系统,它是机床工作的动力装置,CNC装置的指令要靠伺服驱动系统付诸实施,所以,伺服驱动系统是数控机床的重要组成部分。
⑹可编程控制器。可编程控制器 (PC,Programmable Controller) 是一种以微处理器为基础的通用型自动控制装置,专为在工业环境下应用而设计的。由于最初研制这种装置的目的是为了解决生产设备的逻辑及开关控制, 故把称它为可编程逻辑控制器( PLC, Programmable Logic Controller)。当PLC用于控制机床顺序动作时,也可称之为编程机床控制器( PMC, Programmable Machine Controller )。PLC己成为数控机床不可缺少的控制装置。CNC和PLC协调配合,共同完成对数控机床的控制。
⑺测量反馈装置。测量装置也称反馈元件,包括光栅、旋转编码器、激光测距仪、磁栅等。通常安装在机床的工作台或丝杠上,它把机床工作台的实际位移转变成电信号反馈给CNC装置,供CNC装置与指令值比较产生误差信号,以控制机床向消除该误差的方向移动。
数控车床的分类:数控车床的品种和规格繁多,一般可以用下面三种方法分类。 ⑴按控制系统分。目前市面上占有率较大的有法拉克、华中、广数、西门子、三菱等。⑵按运动方式分类: ①点位控制数控机床; ②点位/直线控制数控机床;③连续控制数控机床。⑶按控制方式分类。按控制方式分类可以分为开环控制数控机床、闭环控制数控机床和半闭环控制数控机床。
维修人员通过故障发生时的各种光、声、味等异常现象的观察,认真察看系统的各个部分,将故障范围缩小到一个模块或一块印刷线:数控机床加工过程中,突然出现停机。打开数控柜检查发现Y轴电机主电路保险管烧坏,经仔细观察,检查与Y轴有关的部件,最后发现Y轴电机动力线外皮被硬物划伤,损伤处碰到机床外壳上,造成短路烧断保险,更换Y轴电机动力线后,故障消除,机床恢复正常。
数控系统的自诊断功能,已经成为衡量数控系统性能特性的重要指标,数控系统的自诊断功能随时监视数控系统的工作状态。一旦发生异常情况,立即在CRT上显示报警信息或用发光二极管指示故障的大致起因,这是维修中最有效的一种方法。
CRT的显示表明ROM测试通过,RAM测试未能通过。RAM测试未能通过,不一定是RAM故障,可能是RAM中参数丢失或电池接触不良一起的参数丢失,经检查故障原因是由于更换电池后电池接触不良,所以一开机就出现上述故障现象。
功能程序测试法就是将数控系统的常用功能和特殊功能用手工编程或自动编程的方法,编制成一个功能测试程序,送入数控系统,然后让数控系统运行这个测试程序,借以检查机床执行这些功能的准确性和可靠性,进而判断出故障发生的可能原因。
例3:采用FANUC6M系统的一台数控铣床,在对工件进行曲线加工时出现爬行现象,用自编的功能测试程序,机床能顺利运行完成各种预定动作,说明机床数控系统工作正常,于是对所用曲线加工程序进行检查,发现在编程时采用了G61指令,即每加工一段就要进行1次到未停止检查,从而使机床出现爬行现象,将G61指令改用G64(连续切削方式)指令代替之后,爬行现象就消除了
所谓交换法就是在分析出故障大致起因的情况下,利用备用的印刷线路板、模板、集成电路芯片或元件替换有疑点的部分,从而把故障范围缩小到印刷线路板或芯片一级。
例4:TH6350加工中心旋转工作台抬起后旋转不止,且无减速,无任何报警信号出现。对这种故障,可能是由于旋转工件台的简易位控器故障造成的,为进一步证实故障部位,考虑到该加工中心的刀库的简易位控器与转台的基本一样。于是采用交换法进行检查,交换刀库与转台的位控器后,并按转台位控器的设定对刀库位控器进行了重新设定,交换后,刀库则出现旋转不止,而转台运行正常,证实了故障确实出在转台的位控器上IM电竞。
根据CNC组成原理,从逻辑上分析各点的逻辑电平和特征参数,从系统各部件的工作原理着手进行分析和判断,确定故障部位的维修方法。这种方法的运用,要求维修人员对整个系统或每个部件的工作原理都有清楚的、较深的了解,才可能对故障部位进行定位。
例5:PNE710数控车床出现Y轴进给失控,无论是点动或是程序进给,导轨一旦移动起来就不能停下来,直到按下紧急停止为止。
根据数控系统位置控制的基本原理,可以确定故障出在X轴的位置环上,并很可能是位置反馈信号丢失,这样,一旦数控装置给出进给量的指令位置,反馈的实际位置始终为零,位置误差始终不能消除,导致机床进给的失控,拆下位置测量装置脉冲编码器进行检查,发现编码器里灯丝已断,导致无反馈输入信号,更换Y轴编码器后,故障排除。
数控系统发现故障时应及时核对系统参数,系统参数的变化会直接影响到机床的性能,甚至使机床不能正常工作,出现故障,参数通常存放在磁泡存储器或由电池保持的CMOSRAM中,一旦外界干扰或电池电压不足,会使系统参数丢失或发生变化而引起混乱现象,通过核对,修正参数,就能排除故障。
例6:G18CP4数控磨床,数控系统是FANUC11M系统,故障现象使机床不能工作,CRT显示器无任何报警信息。
检查机床各部分,发现CNC装置及CNC与各接口的连接单元都是好的,最后分析是由于外部干扰引起磁泡存储器内存储数据混乱而造成的,因此,对磁泡存储器存储内容进行了全部清除,重新按手册送入数控系统各种参数后,数控机床即恢复正常。除了上面介绍的几种检查方法外,还有测量比较法、敲击法、局部升温法,电压拉编法及开环检测法等,这些方法各有特点,维修时应根据故障现象,常常同时采用几种方法,灵活运用,对故障进行综合分析逐步缩小故障范围,以达到排除故障的目的。
数控机床机械手是由控制系统、驱动系统、执行机构以及位置检测系统四大块组成的,实际工业应用过程中,需要这四部分共同配合来完成一项任务。这里给出数控机床机械手的工作图
控制系统是机械手的大脑,它决定着机械手的具体运动方式。机械手一个动作的完成首先是由用户向控制系统发出指令,控制系统将该指令转化为具体的控制信号,通过程序控制电路、电极控制模块、机械控制等几部分来控制机械手实际运动。其次,机械控制模块还会将机械手实际的运动情况收集起来,转换为相应信号反馈给控制系统,以判断机械手是否按照用户要求运动,是否能够准确的完成用户所指定的任务。当反馈信号显示机械手出现运动偏差时,控制系统将发出警报信号提示用户。
驱动系统顾名思义是数控机床机械手中驱动执行机构运动的装置,该装置的主要组成部分为控制调节器、动力系统、辅助装置等。我们在工业生产中所提及的机械传动、液压传动等,均是使用较为广泛的驱动系统。
数控机床机械手外型上与人手臂相类似,也是有手腕、手臂、抓手三部分组成,特殊情况下还可以加装移动行走机构,提高机械手运行范围。抓手的主要作用就是抓取物料,常见的抓取方式为吸附式和手抓式。吸附式抓手是通过所安装的吸盘来执行任务的,电磁式吸盘依靠电磁铁所产生的磁力来吸附导磁性物质,手抓式吸盘就像是人的手一样抓取物件,所以在实际应用中,主要用来抓取重量较轻,尺寸较小的零件。手腕部分的主要作用是用来调节工件的抓举方位以及角度,它是连接抓手与手臂的关键部分。手臂部分是机械手的主要城中部分,它主要是控制抓手从最佳的角度抓取物件,同时根据软件控制系统发出的信号,按照要求将物件放至准确位置。
数控机床机械手位置信号有手臂位置、抓手状态、行走位置等几种,信号检测系统的主要作用就是用来检测这几种信号,然后将信号反馈至主控制系统用来判断当前各个位置信号是否正确,机械手各部件是否处于正确位置,同时主控制系统向位置检测系统发送控制信号,给出机械手下一步操作任务。
数控机床机械手可以应用于很多种工业生产过程中,但是生产内容不同所使用的机械手类型也不同。当前数控机床机械手有专用和通用两种,所谓专用就是只能够用于特定的生产过程中,主控系统程序是固定的不能随意更改的,这种机械手通常情况下用于单一工业生产过程;所谓通用就是指机械手可以用于不同工业生产过程,其主控系统程序可以根据控制需要进行更改调整,在不同场合提供不同的运动方式。
驱动方式决定着机械手的运动方式,它也是区分机械手类型的重要因素。气压机械手是依靠压缩空气来驱动的,这种机械手以空气为介质,制造成本较低,而且能够广泛适用于很多高危生产环境中。此外气压机械手的结构相较于其他机械手简易很多,不需要配备专业维修人员,所以这种机械手是很多工业生产控制过程的首选;液压机械手主要用于质量很大的物件抓取,它依靠密封的液压装置来提供强大动力,但相应的制造成本也比较高,而且对于维护要求也比较高。
现阶段数控机床机械手的控制方式就两种:点位控制和轨迹控制。点位控制思想就是路径线段化,将机械手需要运动路径划分为规定距离的细小线段,划分的线段端点越多,机械手的运动精度就越高,但同时这种控制方式对系统的要求也比较高。这种机械手在当前很多工业控制过程中被广泛使用;轨迹控制相较于点位控制而言技术要求就更高一些,它可以满足机械手在任意空间范围内的运动,而且运行过程更加的稳定准确。这种机械手的控制系统更为复杂,通常情况下需要计算机参与辅助控制。
模块化设计理念是伴随着工业制造方式的不断转变而兴起的,它是将一个整体分割成若干个独立的功能结构,不同部分可以同时设计,然后再组合成一个整体。这种理念简化了设计过程,优化了系统结构,机构中每一个功能及部件都具有较高的独立性,极大地提高了机构的适用范围。模块化产品设计中最根本最核心的内容就是保证功能结构以及物理结构的相似性,同时相互独立的功能部件可以可靠协调工作。对机构进行模块设计时可以沿着功能体系和构造体系两条主线进行,因为系统能够体现出来的任何一项功能,都是建立在其他功能基础之上的,也就是说系统功能具有上下层关系。此外,系统中还存在着并列功能形式,即一个功能对应着系统可以实现的多个功能。在进行数控机床机械手模块化设计时,我们可以根据实际作业的要求来划分机械手的单元模块。机械手底座是所有功能实现的基础,所以要将它设定为整体模块化设计的基础,然后再根据不同结构所承担的不同功能来设计。经过实践证明,模块化设计能够大幅度降低机械手的设计成本,缩减整体设计时间,以最快的速度满足工业生产控制的需要。
从数控机床机械手各个机构功能的角度出发,可以将其分为手部模块、腕部模块以及臂部模块。
机械手手部模块中最重要的组成部分就是手指,它主要用来抓取待加工工件。气动机械手气爪是当前应用最为广泛的结构,这种手指能够自动对中,双向高精度抓取。常见的有2指气爪、3指气爪以及多指气爪。在实际工业生产应用中,以抓取棒料为主,例如¢80×6Omm圆柱型工件
联接件的作用是控制手指抓取直径,气爪运动的最大直径为D2,最小直径为D1。外夹持气爪的夹持力方向是从工件表面指向工件圆心。
机械手腕部模块是由摆动气缸和联接件组成的,它可以保证机械手在90°范围内自由旋转。图中所示联接件1是连接高精度头型调节机构与摆动气缸的,联接件2是连接摆动气缸与气爪的。
通常情况下,联接件都设计有槽与轴相对应的孔,并通过键联接方式将气缸与孔连通。采用螺钉固定的方式防止键的轴向移动。
图1所示为横臂模块的结构图,横臂是由ML2B气缸、联接件、导轨三部分组成的。这三部分均安装在门架横梁上,而且可以在水平方向自由移动。机械手的横臂与直臂也是通过连接件连接在一起的,而且通过高精度柔性调节机构来保证机械手气爪与机床卡盘的对中精度(图2)。
[1]刘进长.抓住机遇促成飞跃-我国机器人产业发展的若干思考[J].机器人技术与应用,2007(3):7-9.
机床数控化改造有多种方案,机床类型不同,改造的内容也不同,所以机床改造内容并非一成不变,而要根据实际情况选取合适的方式,以使普通机床数控化改造后的性能与新的同类数控机床相近或相同。同时,在机床数控化改造完成后,还应注意培训数控机床的操作人员和编程人员,以使改造后的数控机床能够尽快发挥作用。
数控机床的使用提高了机床加工生产的效率。普通机床进行数控化技术改造后可以实现零件加工自动化;其次,零件加工性能更加稳定安全更加可靠。这是由于经数控技术改造的数控机床的各主要部件经过长期工作,几乎不会因刀刃变形而影响生产件的精度;再次,可以为零件生产厂家节约资金。与购买新的普通机床相比,普通机床的数控化改造一般可以节省一半以上的费用;最后,对于复杂的加工零件而言,改造难度越高,其功效提高的越显著:且可不用或少用工装,这样不但节约费用,还可以缩短零件生产的准备时间。由于所需加工产品的尺寸误差较小,精度要求高,不需要再进行修配。而数控机床由于实现了加工的自动化,计算机系统可以对刀具进行自动化管理,从而不会因为刀具的磨损而影响加工零件的精度与一致性;由于数控机床可以实现多种加工功能,因此可以加t出复杂的零件;由于实现了加工产品的自动化生产,数控机床的加工效率可以提高许多。计算机拥有强大的记忆和存储功能,因而可以把所需的程序存储下来,然后根据程序的规定自动去执行加工工序,实现加工的自动化;数控机床实现了多道工序集中完成,减少了频繁搬运被加工的零件,当零件装夹好后,可以实现多道工序的加工。
机床改造过程中首要任务是对旧机床进行类似于通常的机床大修,以恢复机床精度,达到新机床的制造标准。但是机床数控化后对机床精度的要求与普通机床的大修是有区别的,即整个机床精度的恢复与机械传动部分的改进,都要为满足数控机床的结构特点和数控自动化加工的要求来进行。数控机床的主轴驱动系统和进给驱动系统分别采用交、直流主轴电动机和伺服电动机驱动。这两类电动机调速范围大,并可无极变速,因此使主轴箱、进给变速箱及其传动系统大为简化。由电动机直接连接主轴或滚珠丝杠。目前数控机床进给系统中常用的机械传动装置主要有滚珠丝杠副、静压蜗杆蜗母条和预加载荷双齿轮齿条三种。机床采用的导轨是新材料低摩擦因数的导轨,如滑动导轨、滚动导轨和静压导轨。
根据要进行数控化改造机床的控制要求,选择合适的数控系统是至关重要的。选择时,除了考虑各项功能满足要求外,还一定要确保系统工作可靠性。一般以性能价格比来选取,并适当考虑售后服务和故障维修等有关情况。如选用企业内已有数控机床中相同型号的数控系统,对今后操作、编程、维修等都带来较大的方便。伺服驱动系统的选取,也按改造数控机床的性能要求决定。若采用同一家公司配套供应的数控系统和伺服驱动系统,改造产品的质量和维修更容易得到保证。国产系统在目前市场上有各种经济型和标准型数控系统供应。其中,经济型数控系统具有结构简单,操作方便,技术易于掌握及制造成本低等优点,系统性能相对较差,可靠性不高。
伺服系统分为开环、半闭环和闭环系统三种。开环控制系统主要由驱动控制单元、执行元件和机床组成。闭环伺服驱动由执行元件、驱动控制单元、机床以及反馈检测单元、比较控制环节组成。在普通机床的数控化改造中一般采用步进电动机和交流伺服电动机。交流伺服电动机调速方便,体积小,目前广泛用于数控机床的传动系统。与步进电动机相比, 其精度高、价格昂贵,考虑到改造本身是经济型改造,因此一般选用步进电动机作为驱动装置。检测反馈单元一般用光栅、脉冲编码器等。在选择驱动装置时,一定要考虑其运转性能与电动机的匹配,同时也要考虑其接口数据与数控装置接口数据的匹配。
前国内外的数控系统厂家,都开发了与自己系统配套的驱动器,如广州数控适配da98 系列驱动器,华中适配hsv 系列动器,fanuc(发那科)本身开发了集成程度很高的多轴驱动器,所以一般优先考虑配套的驱动器。
在进行机床数控化改造时,原机床的电气控制部分一般只能报废,重新按数控化改造要求进行设计制作。数控机床的强电控制部分设计中要特别注意的是,数控系统各接口信号的特点和形式要相配,并且在设计过程中应尽量简化强电控制线路。在电气控制系统的改造设计中,应该遵循:机床在满足控制要求的前提下,设计方案力求简单、经济,不宜盲目追求自动化和高指标,力求控制系统操作简单、车床使用与维修方便。机床中的主轴电动机、冷却泵电动机、刀架电动机等均需系统自动控制。数控机床中电气控制系统除了对机床辅助运动和辅助动作控制外,还包括对保护开关、各种行程、极限开关的控制, 以及在操作盘上所有按键、操作指示灯等的控制。改造后的电气控制系统,不仅保留了机床传统控制系统的优点,同时具有体积小、功能强、通用性和灵活性强、使用维护方便等特点。
由于机床数控化改造有多种方案,机床类型不同,改造的内容也不同,所以上述机床改造内容并非一成不变,而要根据实际情况选取合适的方式,以使普通机床数控化改造后的性能与新的同类数控机床相近或相同。另外,在机床数控化改造完成后,还应注意培训数控机床的操作人员和编程人员,以使改造后的数控机床能够尽快发挥作用。
近年来,我国高校开始扩招,数控机床专业学生数量也在增加。在这样的情况下,高校必须加大对数控设备方面的资金投入,从根本上满足大学生学校与实践的需求。本文从了解数控仿真软件概念入手,探讨数控仿真软件在实践教学中的应用,并针对常见问题提出有效解决对策。
数控仿真软件,即在实现计算机编程与科学建模的基础上,以动态的方式,将加工全过程演示出来,主要进行二维和三维图形呈现[1]。通过这样的方式,转变了传统式的数控机床教学模式,那些之前必须在专业实验室和专门工厂当中进行教学的演示功能,如今可以在虚拟的软件环境中实现,数控教学的灵活性和便利性更强。数控仿真系统的应用优势显著IM电竞,主要特点如下:仿真功能强而全面,刀具库体系丰富而完善,图形与普通数据接口质量好;对配置的要求不高,仅需仿真软件与普通微机,且能实现自身和多种网络操作系统的结合;需要的资金和原材料少,占地空间小,可避免资源浪费;通过网络交流平台促进师生之间的交流与互动。
第一,虚拟机床仿真软件。在数控机床教学中,虚拟机床仿真软件是以计算机为载体模拟加工全过程的。其特点如下:第一,无论在界面风格,还是在结构方面,虚拟仿真数控机床与真实机床均存在差异性。第二,仿真机床操作流程如下:首先进行毛坯定义,然后进行工件装夹和压板安装,再次进行基准对刀和安装刀具,最后进行机床手动操作[2]。第三,进行完整性地碰撞检测。主要包括手动的和自动的,即刀柄、夹具、刀具、压板、刀具,行程越界,以及主轴不转时相关相关设备的碰撞。在检测过程中,如果出现错误,就会产生报警提示,降低操作失误率。第四,数据接口经过了优化,用户不但可以在真实的环境条件下进行虚拟机床操作,而且可以了解多种运行参数,将别的CAD/CAM软件应用到加工过程中。考试系统完善而灵活,不仅具备远程操作功能,还具备智能化数据保存、评分与查询等功能,实现考评的智能化。由于当前高校开设增设多种数控教学课程,实际参与到数控机床实习当中的学生越来越多,且数控机床价格开始上升,精密性要求越来越高。因此将数控仿真软件应用到实践教学当中,进行数控机床编程优化,加强实践操作培训,能有效地解决相关矛盾与问题。这样不但能够防止操作失误,损坏机床设备,而且操作者还能在仿真机床的操作中获取真实感受,处理了数控机床设备不足的问题,赋予学生更多的实践操作机会。第二,CAD/CAM一体化软件。在数控机床教学中,CAD/CAM一体化软件特点如下:可呈现出直观性的几何造型,进行复杂零件的优化设计;粗加工技术先进化和智能化,加工方式多样而灵活;具备较强的刀具路径校验功能。针对刚刚学习数控机床加工知识的学生来说,通过应用CAD/CAM一体化软件进行教学,可以及时建立零件模型,进而快速地生成数字代码,降低手工编程的繁琐性。在这么直观的模型教学模式下,能激发起学生参与数控机床加工和设计的积极性与兴趣,但也存在不足之处,即容易与实际加工脱节。该编程模式是否和真实机床相兼容,相关参数设置的是否精准,是无法在软件中观察到的。装夹等核心步骤也难以在软件中体现。因此,CAD/CAM一体化软件仿真,还未进入到真实的加工过程。且编程属于基本功能,一味地跳开编程,无法促进学生对理论知识的认识。针对金工实习教学来说,往往注重培养学生的独立操作能力,且以现场理论性教学为辅,旨在促使学生对数控机床加工有基本的认知。但针对职业培训来说,往往以受训者切实掌握技术为准。通过对比可知,金工实习教学会受到时间与课程方面的影响。通过进行仿真软件课堂教学,学生只能对CAD/CAM软件有一个大概的了解,而要想完全掌握和应用CAD/CAM软件,必须积累加工经验,花费较长的时间。因此,针对那些具有编程基础的学生教学,往往采用CAD/CAM一体化软件。
在数控机床教学中应用数控仿真软件,给教师的“教”和学生的“学”带来了便利,但其仅仅属于一种加工模拟软件,与真实加工过程相比存有差别,不能代替学生在实践加工操作中的知识与技能积累。因此,在实践教学当中,单纯依靠数控仿真软件是不可行的,学生无法真正掌握实践操作技能。要想解决这一问题,可从以下两方面入手:一方面,高校要结合教学实践情况,科学安排和设计课程教学进度。在学生学习数控仿真软件课程知识之前,为他们安排到工厂中实习,让学生在实习过程中获取对不同数控加工方法的感性认知。此外,在加强数控仿真软件训练之前,应先进行数控机床课程教学和数控加工工艺课程教学。这样的话,学生就能在掌握不同机床实践操作、加工、切削用量计算方法的基础上,更加透彻地掌握数控仿真的全过程,实现数控仿真与真实加工的有效结合。另一方面,要科学合理地穿插与安排学生,参与到真实的数控机床训练当中。这样不仅能够防止学生对仿真软件过于依赖,还能真正培养学生的机床实际操作技能。要想实现这一点,应提升高校的教学管理水平。
综上所述,在高校数控机床教学中,应用数控仿真软件,已经成为常见方法。要想切实地优化数控机床教学效果,教师应当从软件应用方法与教学内容等方面入手,充分发挥不同类型的数控仿真软件的应用作用。